On universality of homogeneous Euler equation

نویسندگان

چکیده

Master character of the multidimensional homogeneous Euler equation is discussed. It shown that under restrictions to lower dimensions certain subclasses its solutions provide us with various hydrodynamic type equations. Integrable one dimensional systems in terms Riemann invariants and extensions, equations describing isoenthalpic polytropic motions shallow water are among them.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discrete Models of the Euler Equation

We consider two discrete models for the Euler equation describing incompressible fluid dynamics. These models are infinite coupled systems of ODEs for the functions uj which can be thought of as wavelet coefficients of the fluid velocity. The first model has been proposed and studied by Katz and Pavlović. The second has been recently discussed by Waleffe and goes back to Obukhov studies of the ...

متن کامل

Isentropic Euler equation

An all speed scheme for the Isentropic Euler equation is presented in this paper. When the Mach number tends to zero, the compressible Euler equation converges to its incompressible counterpart, in which the density becomes a constant. Increasing approximation errors and severe stability constraints are the main difficulty in the low Mach regime. The key idea of our all speed scheme is the spec...

متن کامل

Euler Equation Branching

Some macroeconomic models exhibit a type of global indeterminacy known as Euler equation branching (e.g., the one-sector growth model with a production externality). The dynamics in such models are governed by a differential inclusion ẋ ∈ F (x), where F is a set-valued function. In this paper, we show that in models with Euler equation branching there are multiple equilibria and that the dynami...

متن کامل

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem. 

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/abf586